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Abstract. Integral and derivative dispersion relations (DR) are considered for the forward scattering pp
and p̄p amplitudes. A new representation for the derivative DR, valid not only at high energy, is obtained.
The data on the total cross sections for pp(p̄p) interaction as well as the data on the parameter ρ are
analyzed within the various forms of the DR and high-energy Regge models. It is shown that three models
for the Pomeron, Simple pole Pomeron, Tripole Pomeron and Dipole Pomeron (the both with the intercept
equal unit) lead to practically equivalent description of the data at

√
s >5 GeV. It is also shown that the

correctly calculated low-energy part of the dispersion integral (from the two-proton threshold up to
√

s =5
GeV) allows to reproduce well the ρ data at low energies without additional free parameters.

PACS. 13.85.Lg – 11.55.Fv – 11.55.Jy

1 Introduction

The energy dependence of the hadronic total cross sections
as well as that of the parameters ρ = �eA(s, 0)/�mA(s, 0)
- the ratios of the real to the imaginary part of the for-
ward scattering amplitudes - was widely discussed quite
a long time ago (see [1,2] and references therein). Howe-
ver, in spite of recent detailed investigations on the subject
[3], the theoretical situation remains somewhat undecided,
mainly because of the ρ parameter.

In the papers [3], all available data on σtot(s) and ρ(s)
for hadron-hadron, photon-hadron and photon-photon in-
teractions were considered. Many analytical models for
the forward scattering amplitudes were fitted and compa-
red. The ratio ρ was calculated in explicit form, from the
imaginary part parametrised by contributions from the
pomeron and secondary reggeons. The values of the free
parameters were determined from the fit to the data at
s ≥ smin, where

√
smin = 5 GeV. Omitting all details,

we note here the main two conclusions. The best descrip-
tion of the data is obtained for the model with σtot rising
as log2 s. The model with σtot(s) ∝ sε, ε > 0 was exclu-
ded from the list of the best models (in accordance with
COMPETE criteria, see details in [3]).

Analysis of these results shows that they are due to
a poor description of ρ data at low energy. On the other
hand, there are a few questions concerning the explicit
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Regge-type models usually used for the analysis and de-
scription of the data. How low in energy can the Regge
parametrisations be extended, as they are written as func-
tions of the asymptotic variable s rather than the “Regge”
variable cos θt (= E/m in the laboratory system for identi-
cal colliding particles)? At which energies can the “asym-
ptotic” normalization

σtot(s) = (1/s)�mA(s, 0) (1)

instead of the standard one

σtot(s) = (1/2mE)�mA(s, 0) (2)

be used? And last, how much do the analytic expressions
for ρ based on the derivative dispersion relations deviate
from those calculated in the integral form?

In this paper, we try to answer these questions consi-
dering three pomeron models for pp and p̄p interactions
at

√
s ≥ 5 GeV.

2 Integral and derivative dispersion relations

Assuming, in accordance with many analyzes, that the
odderon does not contribute asymptotically at t = 0, one
can show that the integral dispersion relations (IDR) for
pp and p̄p amplitudes can be reduced to those with one
subtraction constant [1]:

ρ±σ± = B
2mpp +

+ E
πp P

∞∫

mp

[
σ±

E′(E′−E) − σ∓
E′(E′+E)

]
p′ dE′ (3)
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where mp is the proton mass, E and p are the energy and
momentum of the proton in the laboratory system, and B
is a subtraction constant, usually determined from the fit
to the data. The indices +(−) stand respectively for the
pp and (p̄p) amplitudes. The standard normalization (2)
is chosen in (3).

In the above expression, the contributions of the in-
tegral over the unphysical cuts from the two-pion to the
two-proton threshold are omitted because they are � 1%
(see, e.g. [4]) in the region of interest (

√
s ≥ 5 GeV).

The derivative dispersion relations (DDR) were obtai-
ned [2] separately for crossing-even and crossing-odd am-
plitudes

f±(s, 0) = A+(s, 0) ± A−(s, 0). (4)

They are very useful in a practice due to their simple
analytical form at high energies, E � mp:

�ef+(E, 0) ≈ E tan
[
π

2
E

d

dE

]

�mf+(E, 0)/E. (5)

However it is important to estimate the corrections to
these asymptotic relations (5) if one is to use them at
finite s.

It will be shown in the forthcoming paper that one can
obtain for the even part of amplitude

�ef+(E, 0) = B+ + E tan
[

π
2 E d

dE

]�mf+(E, 0)/E −
− 2

π

∞∑

p=0

C+(p)
2p+1

(mp

E

)2p

(6)
with

C+(p) =
e−ξDξ

2p + 1 + Dξ
[�mf+(E, 0) − E�mf ′

+(E, 0)].

where f ′ = df/dE and Dξ = d/dξ, ξ = ln(E/mp).
It can be proven, using the properties of exp(−ξDξ),

that C+(p) does not depend on E. A similar expression is
obtained for the crossing-odd part of the amplitudes.

3 Phenomenology

Our aim is to compare the fits of three pomeron models
with ρ(s) calculated by two methods: the integral disper-
sion relation, and the asymptotic form of the DDR but
with a subtraction constant.

We apply as a first step the IDR and DDR only to pp
and p̄p data, fitting the high-energy models to the data at√

s ≥ 5 GeV.

3.1 Low-energy data

Low-energy total cross sections for pp (143 points) and
p̄p (220 points) interactions at

√
s < 5 GeV are explicitly

parameterized and the values of the free parameters are
determined from a fit to the data at s < smin (all data on
σ and ρ are taken from [6]). Thus we perform an overall
fit in three steps.

1. The chosen model for high-energy cross-sections is fit-
ted to the data on the cross sections only at s > smin.

2. The obtained “high-energy” parameters are fixed. The
“low-energy” parameters are determined from the fit
at s < smin, but with σp̄p

pp(smin) given by the first step.
3. The subtraction constant B+ is determined from the

fit at s > smin with all other parameters kept fixed.
Then, without fitting, we calculate the ratios ρpp and

ρp̄p at all energies above the physical threshold.

3.2 High energy. Pomeron models

We consider three models leading to different asympto-
tic behaviors for the total cross sections. We start from
the explicit parameterization of the total pp and p̄p cross-
sections, then, to find the ratios of the real to imaginary
parts, we apply the IDR making use of the second method
for a calculation of the low-energy part of the dispersion
integral. Then we compare results for ratios calculated
through the DDR.

All the models include the contributions of pomeron,
f and ω reggeons (we consider these reggeons as effective
ones because it is not reasonable to add other secondary
reggeons provided only the pp and p̄p data are fitted.)

σp̄p
pp = P(E) + Rf (E) ± Rω(E), (7)

where Rf = R+, Rω = R− and

R±(E) = g± (E/λmp)
α±(0)−1

. (8)

The parameter λ can play a role only for the pomeron
term in the triple pole model (see below), in the simple
pole and dipole models λ = 1.

When the imaginary part of amplitude is integrated in
IDR we consider (for comparison) two kinds of normaliza-
tion: the standard one defined in (2) and the asymptotic
one given by (1). For the latter case, in the expressions for
cross-sections, the replacement E/λmp → s/s1 is made.

Besides, we compare our results with the models which
are written as functions of −is and with the asymptotic
normalization (1).

1
sAp̄p

pp(s, 0) = iP(−is) + iRf (−is) ± Rω(−is) (9)

We denote such fits as “−is fits”. We present the results
of the fits using DDR (with a subtraction constant) and of
standard fits with amplitudes defined in accordance with
“−is” rule.
Simple pole pomeron model (SP). In this model, the
intercept of the pomeron is larger than unity [5]

P(E) = g (E/(λmp))
αP(0)−1

. (10)

Dipole pomeron model (DP). The pomeron in this
model is a double pole in the complex angular momentum
plane with intercept αP(0) = 1.

P(E) = g1 + g2 ln(E/λmp). (11)

Tripole pomeron model (TP). The pomeron is the
hardest complex j-plane singularity allowed by unitarity:
the triple pole at t = 0 and j = 1.

P(E) = g1 + g2 ln2(E/λmp). (12)
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Table 1. The values of the χ2 per point (χ2/Np) obtained in
the various pomeron models and through the different methods
for the calculation of the ratio ρ. Both σtot and ρ are included

Standard Asymptotic
normalization normalization
IDR DDR IDR ” − is”, B = 0

Simple Pole 1.046 1.065 1.112 1.121
Double Pole 1.053 1.045 1.132 1.079
Triple Pole 1.044 1.046 1.111 1.115
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SP Pomeron, "1/s" normalization

Integral DR
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Fig. 1. The IDR fit with asymptotic normalization and the
“−is” fit

4 Results, discussion, and conclusions

The quality of the fits is presented in the Table, where
χ2 per number of experimental points is shown. In the
Figures we show the curves only for the simple-pole pome-
ron model. For other models the curves are practically the
same in the region where data are available.

As one can see from the Table, all models give similar
descriptions of the data on σtot and ρ. Evidently, the fit
with the integral dispersion relations and with the stan-
dard normalization is preferable. While the data on σ are
described with χ2/Np ≈ 0.91, the data on ρ are described
less well, with a χ2/Np ≈ 1.5 in pp case. We believe that
this occurs because of the bad quality of the ρ data.

We would like to note that the values of ρ calculated
using DDR deviate from those calculated with IDR even at√

s � 7−8 GeV (see Fig. 2). It means that in order to have
more correct values of the ρ at such energies, one must use
the IDR rather than explicit analytical expressions from
the DDR.

The neglect of the subtraction constant, together with
the use of asymptotic formulae in a non-asymptotic do-
main, may be the source of the conclusion of [3] excluding
the simple-pole model from the list of the best models.
Inclusion of these (non-asymptotic) terms improves the
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Fig. 2. The integral and derivative dispersion relation fit with
the standard normalization (see text for details)

description of ρ considerably, and may lead to different
conclusions regarding the simple-pole model.

However, in order to have these final conclusions, one
will have to make a complete (a la COMPETE) analysis
of the all data, including cross sections and ρ for πp and
Kp interactions1.
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1 The first results obtained in this direction (after the Con-
ference) are given in [7].
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